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Abstract—Greybox fuzzing is a widely used technique for
software testing that has been adopted by practitioners and
researchers to disclose a great number of vulnerabilities in
various software. However, adversaries also weaponize greybox
fuzzing to mine vulnerabilities for malicious intentions. This poses
considerable threats to software systems.

To counteract the misuse of greybox fuzzing, we propose VALL-
NUT, a novel approach to harden software with properties to
combat greybox fuzzing. We dissect the major strategies that
facilitate the success of greybox fuzzing, and accordingly propose
three types of neutralizing schemesseed queue explosion, seed
attenuation, and feedback contamination. We evaluate VALL-
NUT against the mainstream greybox fuzzers on multiple real-
world benchmark programs. The results show that VALL-NUT
can reduce an average of 34% code coverage and 76% detected
crashes in 24-hour tests. Moreover, we conduct comparisons with
two recent studies which show VALL-NUT can achieve a superior
deduction of detected crashes.

Index Terms—Software testing, Fuzzing, Anti greybox fuzzing

I. INTRODUCTION

Since the introduction in the early 1990s, fuzzing [1] has
become one of the most effective approaches for software
testing. The philosophy of fuzzing is to run the target program
with random inputs and watch for abnormal behaviors. Such
abnormal behaviors often indicate the presence of defects.

Based on the awareness of structural knowledge on the
target program, fuzzing techniques are usually categorized as
blackbox, whitebox and greybox. Blackbox fuzzers (e.g., [2[])
deem the target program as a blackbox and generate inputs
following mathematical or statistical models. The lack of
knowledge about the internals of target programs limits the
utility of such fuzzers. Whitebox fuzzers (e.g., [3]-[5]]), on
the contrary, have full access to the target program and can
perform heavy program analysis such as symbolic execution
to gain more profound comprehension. However, whitebox
fuzzers are less scalable because of the expensive program
analysis. Greybox fuzzers strike a balance between effectiveness
and scalability. Greybox fuzzers leverage light-weight program
instrumentation to capture execution feedback from the target
program under test. The feedback can effectively aid the
generation of high-quality seeds while barely decreasing the
execution speed.
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Being effective yet scalable, greybox fuzzing has become the
mainstream technique for vulnerability detection. For instance,
AFL [6], one of the most popular greybox fuzzers, has
assisted the discovery of thousands of vulnerabilities. While
greybox fuzzing benefits security practitioners and researchers,
unsurprisingly, it is also used by adversaries to mine zero-day
vulnerabilities for malicious intentions. In this sense, greybox
fuzzing turns into a threat against software systems that undergo
insufficient tests. To mitigate this threat, an intuitive reaction
is to “sufficiently” extend greybox fuzzing on software prior
to release. This, however, is often infeasible due to constrained
time budgets. Even worse, they lack theoretical foundations to
determine “sufficiency” of fuzz testing.

Instead of racing with adversaries by running fuzzing, we
turn to the strategy of anti-greybox fuzzing. The idea is to
harden the software with properties that can combat greybox
fuzzing. There are two nontrivial challenges for achieving
this goal. On the one hand, we should enable the software
to thwart the fundamental mechanisms of grey-box fuzzing,
instead of exploiting the weaknesses in the implementations
of specific tools. Anti-fuzzing techniques that follow the
latter strategy (e.g., [7], [8]]) are fragile against varieties and
advances in implementations. On the other hand, anti-fuzzing
techniques have to be non-intrusive to the target software. More
specifically, we need to preserve the original semantics and
avoid downgrading the execution efficiency for normal usage.

In this study, we propose VALL—NU to address the
aforementioned challenges. Specifically, we first summarize
a systematic model of grey-box fuzzing, which captures the
major contributing strategies and abstracts away implementation
details. This model reveals that the success of greybox fuzzing
is largely attributed to a feedback system powered by three
key components, namely the seed evaluator, the seed mutator
and the feedback collector. To subvert this feedback system,
VALL-NUT generates fuzzing obstacle code and implants it
into the target program. These pieces of fuzzing-obstacle
code sabotage the feedback system from three aspects—seed
queue explosion, seed attenuation and feedback contamination.
More details about these three techniques can be found at
Section Owing to these counter measurements, VALL-
NUT can effectively neutralize the power of greybox fuzzers.

The term “VALL-NUT” derives from the defensive plant “WALL-NUT” in
the game of Plants vs. Zombies, which acts as a shield for the player’s other
plants due to its high durability.
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Fig. 2: Application Scenario of VALL-NUT
Moreover, these techniques are carefully designed and used
to avoid hurting the normal execution, in order to address the
second challenge.

To evaluate the effectiveness and efficiency of VALL-NUT,
we conduct extensive experiments scaling up to more than
2,400 CPU hours on 6 real-world programs. Our evaluation
results demonstrate that VALL-NUT can reduce 34% code
coverage and 76% detected crashes on average in 24 hours of
fuzzing. Particularly, we find that VALL-NUT fundamentally
restrains the overall performance of greybox fuzzing, making
the latter even less effective than blackbox fuzzing. Last but
not least, VALL-NUT shows higher expressiveness than two
state-of-the-art anti-fuzzing techniques [9]], [[10].
Contributions. We summarize the contributions as follows.

o We systematically study the strengths of greybox fuzzing
and propose counteractive strategies accordingly.

o We tailor the strategies into VALL-NUT, an anti-greybox-
fuzzing system that can effectively restrain the performance
of greybox fuzzing.

« We implement VALL-NUT and evaluate VALL-NUT with
real-world programs. The evaluation results show that VALL-
NUT can significantly hinder the program coverage and bug
finding capabilities of greybox fuzzing.

II. APPLICATION SCENARIO

This research focuses on anti-greybox-fuzzing techniques. To
better clarify our scope, we define greybox fuzzing as follows:
fuzzing techniques that can leverage on light-weight runtime
feedback to keep interesting inputs as seeds for future mutation.

We also model greybox fuzzing in Figure [I] and discuss it in
detail in Section [II-Al

At the high level, we focus on developing techniques that
apply to the application scenario presented in Figure |2} Prior to
release of the target software, the vendor applies our technique
to the source code and produces a self-protecting binary. This
binary can then be released to the public. In this research, we
assume the adversaries can acquire the released binary but have
no access to the source code. Moreover, VALL-NUT is applied
only for the released binary and does not affect the internal
testing process. It provides protection against adverse greybox
fuzzing in cases where the trusted testers failed to detect all
the bugs before releasing the software.

Under the above application scenario and assumptions, we
expect the binary hardened by our techniques to achieve three
goals: First, running greybox fuzzing against the protected
binary would not gain more than using blackbox fuzzing. We
believe this is a reasonable bound, since higher anti-greybox-
fuzzing effectiveness would simply push the adversaries
to adopt blackbox fuzzing; Second, the binary has robust
anti-fuzzing properties, meaning that it will render similar
expressiveness against different implementations of grey-box
fuzzing; Third, the binary neither interrupts normal functionality
nor significantly reduces the execution efficiency. Failing to
satisfy these requirements would prevent vendors from using
our techniques.

ITII. OVERVIEW
A. Greybox Fuzzing Model

In Figure |1} we point out the 3 key components of greybox
fuzzers — the seed evaluator, the seed mutator as well as the
feedback collector. @ The seed evaluator is the component to
facilitate the maintenance of the seed queue. Typically, a seed
evaluator is in charge of selecting the next seed to mutate and
propose how much computational power to be spent on that
seed (aka “power schedule” in [11]]). A good seed evaluator
can help maximize the output via providing optimal solutions
for seed selection and power scheduling. A tampered seed
evaluator may wrongly evaluate the quality of the seeds or
even starve certain seeds. ® The seed mutator is the bread and
butter for all kinds of fuzzers, not just greybox fuzzers. A good



seed mutator can effectively generate new inputs with good
quality. A tampered seed mutator may not be able to generate
new inputs that are “essentially different” from the seed. By
“essentially different”, we mean not only the content but also the
program coverage of the inputs are different. ® The feedback
collector is the component to collect the feedback from the
instrumentation of the target program during the execution. A
good collector can report accurate and compact feedback. A
tampered collector may report wrong and confusing feedback.

B. Overview of Our Approach
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Fig. 3: Workflow of VALL-NUT

As shown in Figure [3] VALL-NUT first profiles the target
program to measure the hitting frequency of basic-block
transitions. This profiling, in particular the frequency in-
formation, helps identify some key locations — Code that
is frequently exercised by fuzzers but rarely hit in normal
execution. These key locations typically reside in the error
handling logic of the target program. At each site of those
locations, VALL-NUT then plants fuzzing-obstacle code in
accordance with the developers’ specifications. These pieces
of fuzzing-obstacle code, while getting fuzzed, would impede
the feedback mechanism that powers greybox fuzzing. More
specifically, the fuzzing-obstacle code @ drives greybox fuzzing
to keep the seeds with lower quality, thus disorders the seed
evaluator; @ leads greybox fuzzing to generate and maintain
seeds with increasing size, making seed mutator less effective;
® contaminates the feedback to greybox fuzzing using schemes
such as overwhelming the feedback storage or introducing
misleading feedback.

IV. THE VALL-NUT METHODOLOGY
A. Profile Generator

In VALL-NUT, we first generate the edge-level frequency
profile for the target program. We then use this profile result to
identify error handling paths for injecting the fuzzing obstacle
code. By error handling paths, we refer to the paths executed by
invalid inputs. Previous work uses basic-block-level frequency
to identify error handling paths [12]]. However, we use an
edge-level frequency because the program may not really have
error handling code. For example, for program 1 in Figure ]
there are four basic blocks A, B, C and D. At A, the program
decides whether the input is valid or not. If the input is valid,

]

Fig. 4: Demonstration of error handling path
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then the control flow goes into B; otherwise C. In this case,
we can say the error handling basic block is C. However,
sometimes the program simply does not handle errors. Like
program 2 in Figure |4] the program handles the valid input
with B and if the input is invalid, the control flow directly
goes from A to D and ends the execution. In this case, while
we cannot find the error handling basic block, we can still
use the edge between A and D to represent the error handling
path. Thus, we use edge-level frequency profile.

The purpose of performing injection on error handling paths
is twofold. First, we attempt to reduce the effect of VALL-NUT
on normal usage as much as possible. The intuition is that
normal users tend to supply valid inputs to the software, while
fuzzers supply invalid inputs to the software most of the time.
Thus, injecting at error handling paths can hinder the fuzzers
without affecting normal usage much. Second, error handling
paths injection can help with the seed queue explosion strategy
by misleading the fuzzer to keep a lot of invalid inputs as seeds
in queue. A detailed discussion about this is in Section

From Figure [3] we can see the profile generator requires
the developer to provide a set of valid inputs V' and a set of
random inputs R. First, we execute the original program binary
with the valid inputs in V' and collect the set of executed edges
E(V). After that, we execute the program with random inputs
in R and collect the set of executed edges F(R). Then we
classify the error handling edges(E HFE) as edges executed
by at least n% of the random inputs and not executed by any
valid input:

EHE ={e :VieP(R), s.t.|i| > |R| * n/100,
ecE(i)ande¢E(V)}
where P(E(R)) is the power set of E(R) and E(i) is the
set of executed edges with inputs from ¢. The value of n
in Equation [I] works as a throttle for controlling the number

of instrumented locations. A higher value of n means that a
smaller number of edges will be included in EH E.

(1)

Later, as shown in Figure [3] the customized compiler will
break up the edges in EHE and insert the obstacle code for
hindering greybox fuzzers. For example, after injecting the
obstacle code, the sample program in Listing ?? will become
equivalent to the program shown in Listing ??.



B. Fuzzing Obstacle Generator

In VALL-NUT, we use the fuzzing obstacle generator to
generate the fuzzing obstacles which are to be injected
by breaking up the error handling edges identified through
profiling. The fuzzing obstacles are specially designed code
snippets for carrying out the three strategies proposed in

Figure

Algorithm 1: The Fuzzing Obstacle Code

Input: input: test input for the program;
jump_limit: the limit of statement jumps
1 < 0;
initialize input_length_steps[];
/I get the length of the input
input_len < length(input);
// initiate the labels for the jump tables
jtllabels < [jtllabell, jtllabel2, ... jtllabeln, ... jtlendlabel];
jt2labels <« [jt2labell, jt2label2, ... jt2labeln, ... jt2endlabel];
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jtklabels < [jtklabell, jtklabel2, ... jtklabeln, ... jtkendlabel];
jtllabell:

if i < jump_limit then

i +— 1 + 1;

rand_index <— rand(0, length(jt1labels));

goto jtllabels[rand_index];

e e
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else
| goto jtlendlabel;

e
® N w»m

jtllabeln:

if i < jump_limit then

1 +—1 + 1;

rand_index < rand(0, length(jtllabels));
goto jtllabels[rand_index];

NN =
N =S e

else
| goto jtlendlabel;
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jtlendlabel:
if input_len > input_lengths_steps[0] then
i+ 0;
‘ goto jt2labell;
else
| goto jtkendlabel;
jt2labell:

W W W W NN
W N =S X3

jt2endlabel:
if input_len > input_lengths_steps[1] then
i < 0;
goto jt3labell;
else
| goto jtkendlabel;

B W W W W W W
S L X 9 &

jtkendlabel:
/1 this is the end of the obstacle code
// just go back to the original program logic

s s &
WO -

Algorithm |1| shows the logic of the fuzzing obstacle code.

The code is generated by the fuzzing obstacle generator
according to the user configuration and the configurable
variables are jump_limit, input_length_steps[] and the size
of each jump table. The core logic of the obstacle code is a
cluster of collaborative jump tables. A jump table is a method
of transferring program control from one part to another via

jumping between labeled locations in the code. Since the labels
are stored in a table, the program control can be transferred
to any labeled location by querying the table. Line [6] to line 9]
in Algorithm [I] are examples of jump table declarations. In
general, the obstacle code consists of two different types of
jump tables. The first type of jump table is jt/ in Algorithm [I]
This jump table contains more labels and mainly helps with
the seed queue explosion strategy. The second type of jump
tables are jz2 to jtk in Algorithm [Il These jump tables help
with the seed attenuation strategy. After the jump tables are
declared, the labels are put into the code to mark the locations
for jumping, like line [I0] or line [T8] With the jump tables, we
have three decisions to make. @ While jumping between the
labeled locations, we need to tell when to break out. This is
controlled by the jump_limit variable, which limits the number
of jumps before exiting the jump table logic. As shown in
line [TT) and line [T9] the program breaks out from a jump table if
the jump number limit is reached. @ After settling the problem
of when to stop jumping, we need to decide how to select the
next location for jumping. In VALL-NUT, the next location to
jump to is selected randomly from the label table as shown
in line [21] and line 22| ® Since we have multiple jump tables,
we also need to decide when or whether the program should
move on to the next jump table. In VALL-NUT, the program
will continue to execute the next jump table only if the length
of the input is larger than certain value as shown with the if
blocks in line [27) and line 35} This mechanism makes larger
inputs cover more jump tables. Note that the sizes of jump
tables 2 to k are the same and are much smaller than the size
of jump table 1 to reduce the size of the obstacle code.

Here we explain the rationale behind the three strategies
shown in Figure [T]and how the aforementioned fuzzing obstacle
code can help to carry out the strategies in detail.

Seed Queue Explosion. Some existing advances in greybox
fuzzing, like AFLFast [[13]], FairFuzz [[14]] or Vuzzer [12]
propose to degrade the importance of the seeds executing
error handling paths. The intuition is that such inputs are
often far from the major working logic of the program where
the bugs are more likely to reside. Reversely, VALL-NUT can
explode the seed queue maintained by the greybox fuzzers by
misleading them to keep a large amount of inputs exercising
error handling paths.

Since the program can jump freely from one labeled location
to another, a jump table containing n labels can contribute
n basic-blocks and n? basic-block transitions (edges). This
means that the injected jump tables can provide a considerable
amount of program coverage feedback to trick the fuzzer to
keep a lot of inputs as seeds exercising the injected code.
Furthermore, as the fuzzing obstacle code is injected in the
error handling paths, the new seeds are kept since the injected
code are invalid inputs. Without the fuzzing obstacle code,
greybox fuzzers may keep only a few (chaff) inputs for each
error handling path. Meanwhile, with the jump table 1 in the
fuzzing obstacle code, greybox fuzzers will mistakenly keep a
lot more inputs exercising the error handling paths. As a result,
greybox fuzzers will waste a lot of computational power on



seeds with worse quality.

Seed Attenuation. GBFs prefer more compact seeds. The
intuition is that mutating smaller seeds are more likely to hit
the interesting bytes and cover new paths in the target program.
For example, if a fuzzer is mutating an XML file to test an
XML parser, then mutating the tags is more important than
mutating the data and mutating a smaller XML file is more
likely to hit the tags. In this sense, some GBFs are trying
to trim the seeds by deleting certain bytes that do not affect
program coverage. For example, Fairfuzz employs aggressive
trimming strategies to bring down the size of the seeds as
much as possible. Reversely, VALL-NUT can guide the GBF to
keep larger and larger inputs as seeds, in which the interesting
bytes are attenuated.

In VALL-NUT, seed attenuation is achieved by providing
more feedback when the seed size is large. In Algorithm [I] we
can see that the jump tables 2 to k inside the fuzzing obstacle
code provides more feedback when the seed size gets larger. In
the actual implementation, we have additional instrumentation
to hook the input reading location of the original program
and keep a copy of the input length for the fuzzing-obstacle
code. The input_lengths_steps|| variable supplied by the
developers works as the staircase to guide greybox fuzzing to
keep larger and larger seeds step by step. As a result, greybox
fuzzers keep more seeds with larger sizes and mutate less
effectively.

Feedback Contamination. One important feature of grey-
box fuzzing is that they collect runtime feedback to identify
interesting inputs and keep them as seeds for further mutations.
However, they are faced with two problems. @ A greybox
fuzzer cannot hold infinite feedback information. Thus, the
buffer for holding this information can get saturated, which
limits the scalability. In fact, CollAFL [15] addressed this
issue and proposed an algorithm for resolving the feedback
record collision problem for normal size programs. @ The other
problem is that some inputs can generate different execution
traces across different runs because of multi-threading or
random logic used in the program. This can cause confusions
to a fuzzer when it tries to store the feedback collected
from executing such inputs. Taking AFL as an example, it
performs more calibration runs [[16] for seed inputs that behave
differently across runs or otherwise the feedback of such inputs
will contaminate the existing feedback record kept by the
fuzzer. Thus, more computation power is spent to calibrate
such inputs and relatively less computation power is used
for mutation and other stuff. With these observations, VALL-
NUT contaminates the feedback records of greybox fuzzers by
saturating the feedback records and introducing inputs with
variable behaviours.

In VALL-NUT, the jump tables provide greybox fuzzers with
a large amount of dummy feedback, which can saturate the
feedback records very quickly. Other than this, the next location
to jump to is selected randomly from the jump table. Thus, the
inputs triggering the jump tables naturally behave differently
across runs. To further disguise these inputs with the inputs
executing normal paths, we add instrumentation that contains

program irrelevant random logic to the place where we hook
the input reading. The effect is that all inputs hold different
execution traces across different runs and the inputs exercising
the fuzzing obstacle code behave very unstably from fuzzers’
point of view. As a result, greybox fuzzers cannot make use of
the feedback effectively when fuzzing the program protected
by VALL-NUT as it is contaminated.

V. EVALUATION

Our tool VALL-NUT is implemented in Python, C, and C++,
using Radamsa [17] to generate random inputs for profile
generation, LLVM |[18]] for both the profiling instrumentation
and the injection of the fuzzing obstacle code, and Redis [19]
as the profile instrumentation log database.

A. Evaluation Setup

Infrastructure. The experiments are conducted on 2 machines,
each with Intel(R) Core(TM) i9-7940X CPU @ 3.10GHz, 28
logical processor cores, and 128GB RAM. The experiment for
each target on each fuzzer is repeated 10 times to mitigate the
randomness of fuzzing. Our experiments scale up to more than
2400 CPU hours.

Evaluated Fuzzers. We evaluate our techniques on 3 different
fuzzers, including AFL-QEMU, AFL-Blackbox (AFL-BB),
Fairfuzz-QEMU. @ AFL-QEMU is AFL running in QEMU
mode for fuzzing program binaries. It utilizes QEMU to collect
the coverage feedback of the target program. AFL is the
baseline fuzzer used in many previous researches and it is
recognized as the state-of-the-art greybox fuzzer. @ AFL-BB
is a modified version of AFL-QEMU which is the same as
AFL-QEMU except that its seed queue will always loop over
the initial seeds. In short, AFL-BB is the blackbox counterpart
of AFL-QEMU. AFL-BB can represent blackbox fuzzers
with reasonably good mutation operators. Although VALL-NUT
targets on greybox fuzzing but not blackbox fuzzing, we still
run AFL-BB to check if VALL-NUT can limit the performance
of greybox fuzzers to be equal to or even worse than the
blackbox fuzzer. @ Fairfuzz-QEMU uses the QEMU mode of
the current state-of-the-art greybox fuzzer FairFuzz [14]] which
targets on low-frequency edges. FairFuzz is considered as an
improved version of AFL and it used to check if the greybox
fuzzers with awareness of the path frequency can evade our
strategy of inserting fuzzing obstacles on high frequency paths.

Evaluated Programs. Our criteria for choosing the programs
are: 1) the programs should be diverse in program sizes; 2)
the programs should be diverse in their functionality. 3) the
programs should be used in previous works or benchmark
sets. With these criteria, we chose 6 programs for evaluation
and Table [I] shows the details about the target programs.
Additionally, the initial seeds we use for fuzzing either align
with the previous works or from the default seed corpus
provided by AFL.

Performance Metrics. Following Klees et al.’s [25] recommen-
dation, we use the number of crashes and edge level coverage as
measurements for the fuzzing results. We also apply statistical
tests [26] to the experimental results. We use the Mann Whitney
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Fig. 5: Number of Detected Crash Over Time (Lower is better)

TABLE I: Details of Evaluated Programs

Target  Previous Work Bin Size Input Format
exiv2 1201 [21] 4830K jpg
mjs [22] 156K javascript
mp42aac  [20] 1877K mp4
nm [[14] [13] 5055K elf
objdump  [14] [20] 7408K elf
vorbis 23] [124]] 321K ogg

U-test [27]] to determine the statistical significance of the results,
and the A1, statistics [28] to show the possibility that a fuzzer
performs better on the original binary than on the protected
binary according to all runs.

VALL-NUT Configuration. For selecting the error handling
edges, we set the n in Equation [I] to be 95. For the fuzzing
obstacle code, we use the jump_limit of 10, which means
each input exercising the fuzzing obstacle code occupies 10
edges in the jump table. The input_length_steps we use starts
from 100 and ends at 8000 with each step of 5, which means
VALL-NUT will try to guide the fuzzers to eventually keep seed
inputs larger than 8000 bytes. The jump table used for seed
queue explosion (jtllabels in Algo. [T) contains 10k labels. The
jump tables used for seed attenuation (jt2labels to jtklabels in
Algo. [1) contains 2 labels each.

In addition, the compiled binary of the fuzzing obstacle code
is about 1.2 MB, resulting in the protected binaries 1.2 MB
larger than its original counterpart.

Research Questions. With the experiments, we aim to answer

the following research questions:

RQ1. How well can VALL-NUT hinder bug finding?

RQ2. How well can VALL-NUT reduce program coverage?

RQ3. How do the strategies affect the results individually?

RQ4. How is the performance of VALL-NUT compared to
other anti-fuzz techniques?

B. Hindering Bug Finding (RQI)

In this experiment, we measure the bug finding hindering
capability of VALL-NUT by evaluating the number of crashes
found by all fuzzers in 24 hours on both the protected binary
and the original binary. Note that we did not run AFL-BB on
the protected binary because VALL-NUT targets on greybox
fuzzing techniques. Furthermore, we did not find crashes in
Vorbis with any fuzzer during the experiment.

Figure [5] shows the average number of crashes found over
time by each fuzzer in 24 hours. The lines are the average
numbers of crashes; the shades are the 95% confidence intervals.
The red lines are the results for AFL-QEMU; the blue lines are
the results for Fairfuzz-QEMU; the black lines are the results
for AFL-BB. The dotted lines are the results for the original
binary; the solid lines are the results for the protected binary.

From Figure [5] we can clearly see that for each fuzzer, the
number of crashes found on the protected binary is significantly
less than the number of crashes found on the original binary. In
fact, VALL-NUT can reduce an average of 87% crashes found by
AFL-QEMU and an average of 74% crashes found by Fairfuzz-
QEMU. The significance is clearly demonstrated as the lower
bounds of the 95% confidence intervals of the results on the
original binary are higher than the upper bounds of the 95%
confidence intervals of the results on the protected binary for
each fuzzer. There is only one exception where the confidence
intervals of the results for Fairfuzz-QEMU on mp42aac have
overlaps. Nevertheless, Fairfuzz-QEMU still finds fewer crashes
on the protected binary on average. Moreover, we can also see
that on exiv2, mjs and mp42aac, VALL-NUT reduces the bug
finding capability of AFL-QEMU so much that it performs
even worse than its blackbox counterpart.

Answer to RQ1: We can positively answer RQ1 that
VALL-NUT can significantly hinder the bug finding capa-
bility of greybox fuzzers

C. Reducing Program Coverage (RQ2)

In this experiment, we measure the program coverage
reduction capability via evaluating the number of covered
edges as well as kept seeds (aka paths in AFL) by all fuzzers
in 24 hours. Same as the experiments for hindering bug finding,
we did not run AFL-BB on the protected binary.

Table [[I] shows the detailed results of edge coverage and
statistical test. For AFL-QEMU and Fairfuzz-QEMU, column
orig shows the number of edges covered by the original



TABLE II: Edge Coverage Results (red* represents the edge reduction ratio, calculated by (orig — anti)/orig)

AFL-QEMU Fairfuzz-QEMU AFL-BB
Target
orig anti p-value A2 red” orig anti p-value A2 red” orig p-value A2 red”
exiv2 9506 7167 le-4 1 25% 7804 4315 9e-5 1 45% 8776 9e-5 1 18%
nm 7551 1865 9e-5 1 75% 7891 2013 9e-5 1 74% 3432 9e-5 1 46 %
objdump 5715 3323 9e-5 1 42% 5918 3427 9e-5 1 2% 4372 9e-5 1 24%
mp42aac 2588 2030 9e-5 1 22% 2355 2072 le-3 0.9 12% 2355 8e-2 1 14%
mjs 3320 2791 9e-5 1 16% 3321 2733 9e-5 1 18% 3185 9e-5 1 12%
vorbis 2023 1535 9e-5 1 24% 1901 1683 2e-5 071 11% 1970 de-4 1 22%
Average  5117.17 3118.5 9e-5 1 34% 4865 2707.17 2e-4 094 34% 4015 1le-2 1 23%
35000 33581 actually executes the unique real paths (not the paths introduced
30000 29718 by the fuzzing obstacle code) when running on the protected
25000 binary.
2000 M 20013 O By comparing the red and black bars, we can clearly see
that the seed queue explosion mechanism tricks AFL-QEMU
15000 12960 to keep a large number of seeds in queue. While the total
10000 4364 number of seeds is high, we can see that the number of seeds
5000 1“0328 l N 271;1 a4 1127636 711 exercising the real paths is small as the blue bar is always much
0 -_ - - - -— AR lower than the black bar. To conclude, VALL-NUT can reduce
exiv2 nm  objdump mp42aac mjs  vorbis the real path coverage of greybox fuzzers by introducing an

M anti_path Morig_path Manti_real

Fig. 6: Number of Paths W/-, W/O VALL-NUT

program; column anti shows the number of edges covered
by the protected program; column p-value shows the Mann
Whitney U-test results and a p-value smaller than 0.05 means
the difference between the two sets of data are statistically
significant; column A;5 shows the probability that the fuzzer
covers less edge on the protected binary than on the original
binary; column red shows the percentage of the reduced edges.
For AFL-BB, column orig shows the number of edges covered
by the original program; the rest shows the statistical test results
against that of AFL-QEMU on the protected program.

From Table [[I, we can see that all the p-values between
the protected binary and the original binary for AFL-QEMU
and Fairfuzz-QEMU are smaller than 0.05. Moreover, all the
Ay values are higher than 0.71 — the conventional large effect
size [28]]. This indicates that VALL-NUT can significantly reduce
the program coverage of the greybox fuzzers from the statistics
perspective. In particular, by comparing the results of AFL-
QEMU and AFL-BB, we can see that with the effects of VALL-
NUT, AFL-QEMU finds an average 23% less edges. This means
that VALL-NUT restrains the advantages of greybox fuzzing
and can make it even worse than blackbox fuzzing.

Figure [6] shows the number of seeds kept by the AFL-QEMU
on both protected and original binaries. The number of seeds is
also known as paths in the context of AFL, because each kept
seed is considered to execute a unique path. The red bar shows
the average number of seeds in the queue when running on the
protected binary. The black bar shows the average number of
seeds in the queue when running on the original binary. The
blue bar shows the average number of seeds in the queue that

overwhelming amount of faked paths.

Answer to RQ2: We can positively answer RQ2 that
VALL-NUT can significantly hinder the program coverage
of greybox fuzzers and make them perform worse than
blackbox fuzzers.

D. Effects of Individual Strategies (RQ3)

In this experiment, we evaluate the effects of individual strate-
gies in detail with mjs and mp42aac fuzzed by AFL-QEMU.
As discussed in Section the feedback contamination is
tightly combined with the other 2 strategies in Algo. [I] making
it hard to be separated for individual evaluation. Therefore we
added two sets of configurations during this evaluation. The
first one is called noatt. As indicated by its name, we removed
the code most related to seed attenuation (line[I8]onward) from
the fuzzing obstacle code in this configuration. The second
one is called noexp and we removed the code most related
to seed explosion by removing the first jump table. Despite
the 2 newly added configurations, we still keep the results of
AFL-QEMU running on the original and protected binaries for
comparison.

In Figure [/| and [8] the black plots show the results of the
original binary; the red plots show the results of the binary
protected without seed attenuation; the green plots show the
results of the binary protected without seed queue explosion;
the blue plots show the results of the fully protected binary.

Figure [/| shows the number of edges covered over time by
AFL-QEMU on the 4 binaries. In general, we can see that
AFL-QEMU covered the least edges on the fully protected
binary and covered the most edges on the original binary. The
two strategies can both help to reduce the program coverage
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Fig. 7: Edges Covered Over Time for Each Binary
*Lower is better.
individually and combining them together gives us the best
result. For individual strategies, we can see that on mjs, no-exp
performs better while on mp42aac, no-att performs better. This
indicates that seed attenuation performs a more important role
on mjs than on mp42aac.

To further study the reason behind this phenomenon, we
plot distribution of the size of the seeds kept by the fuzzer
as boxplots in Figure [§] From Figure [8] we can clearly see
that the increment of seed size caused by the seed attenuation
strategies on mjs is much more significant than on mp42aac.
This is caused by the relation between the size of the initial
seeds supplied to the fuzzer and the maximum value in the
input_length_steps[] configurable variable. In section [V-Al we
mentioned that the configuration we used for the experiments
will guide the fuzzer to eventually generate seed inputs larger
than 8000 bytes. As discussed in the application scenario
(Section [M)), this configuration is decided by the developers
before distributing the program binary and the developers have
no idea of the size of the initial seeds used by the attackers. The
average size of the initial seeds used by mjs in the experiment
is about 400 bytes, while the size of the initial seeds used by
mp42aac is about 17k bytes. This means that the initial seeds
of mp42aac are out-of-bound for the guidance of the seed
attenuation strategy which further explains why the increment
in average seed size on mp42aac is ignorable. As a result, the
effect of seed attenuation strategies is much less significant on
mp42aac.

Answer to RQ3: The strategies can help individually and
when combined together, they can achieve the maximum
performance. The significance of individual strategies
varies under different circumstances.

E. Comparison with Other Anti-fuzz Techniques (RQ4)

Two recent works, namely FUZZIFICATION [9]] and ANTI-
Fuzz [10], also cover the topic of anti-fuzz. Both FUZZIFICA-
TION and ANTIFUZZ have released their source code for public
evaluation [29], [30]. We conducted additional experiments to
evaluate VALL-NUT and the two related works.

For FUZZIFICATION, we met a bug during the build process
of the protected program with the LLVM passes provided in
the project. Later, we verified that this is the same issue as the
one reported by lawyer61 on github [31]]. This error happens
when the LLVM pass is adding the SpeedBump strategy. By

6000 70000
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40000
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30000
2000 20000
1000 £ 10000

Oorig Onoatt Onoexp Oanti Oorig Onoatt Onoexp Oanti

(2) mjs (b) mp42aac

Fig. 8: Generated Seed Size (bytes) for Each Binary
*Higher is better.
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Fig. 9: Average Reduced Percentages of Crashes in VALL-NUT,
Fuzzification, and AntiFuzz

*Longer is better.
the time of writing this paper, the bug was not fixed. Thus we
reclaim the data in their paper for comparison.

For ANTIFUZZ, the authors used a python script to generate
a .h file containing all the functions needed for anti-fuzzing
and the user will need to include the . h file in their project and
manually insert the corresponding functions into the correct
locations in the source code. Since the file containing the
core logic is a . h file, not a . hpp file, the implementation of
ANTIFUZZ cannot be applied to some C++ projects due to some
compatibility issues such as the implicit/explicit type conversion
problem. So we decided to conduct experiments on nm and
objdump because they are also used by FUZZIFICATION and
are written in C. Note that in our experiments, we did not
enable the delaying execution feature in ANTIFUZZ because
we think the 750ms sleep used in their previous experiments
brings too much unfairness and VALL-NUT’s effect of slowing
down the execution speed of the original program is negligible
(see Section for the discussion on execution speed delay).
In addition, these experiments are repeated ten times to get
statistically sound results.

Figure [9] shows the average percentages of reduced crashes
found by AFL-QEMU for the program binaries protected by
VALL-NUT, FUZZIFICATION and ANTIFUZZ. We can see that
VALL-NUT reduces the most crashes by eliminating almost
100% of the crashes found in these 2 programs.

Figure 0] shows the number of detected crashes over time for
AFL-QEMU on the original program, the program protected by
ANTIFUZZ and the program protected by VALL-NUT. The line
is the average value across the ten experiments and the shaded
area is the 95% confidence interval. This figure shows that
VALL-NUT hided significantly more crashes from AFL-QEMU
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than ANTIFUZZ.

Figure [11| shows the number of covered edges over time for
AFL-QEMU on the original program, the program protected by
ANTIFUZZ and the program protected by VALL-NUT. The line
is the average value across the ten experiments and the shaded
area is the 95% confidence interval. This figure shows that
VALL-NUT can significantly reduce the coverage achieved by
AFL-QEMU while ANTIFUZZ hardly reduced the coverage.

Answer to RQ4: We can positively answer RQ4
that VALL-NUT has significant advantages comparing to
existing anti-fuzz techniques in both crash and coverage
reduction.

VI. DISCUSSION

Anti-VALL-NUT. As anti-greybox-fuzzing techniques advance,
attackers start to study anti-anti-greybox-fuzzing techniques.
This is an arms race between the attackers and the defenders
that never ends. Moreover, whether attackers can bypass our
techniques also depends on the assumptions about the skill
levels of the attackers. Thus, to limit the scope of the discussion,

we discuss the most straightforward attacks against VALL-NUT.

Since we use edge-level frequency profile in VALL-NUT to
identify the locations for injecting the fuzzing obstacle code,
a question pops up naturally: Can an attacker use edge-level
frequency profiles to identify and further bypass VALL-NUT?
The short answer is NO. The first thing to mention is that the
attacker can only get the protected binary as discussed in our
application scenario (Cf. Figure [2). The second thing is that
the edge-level frequency profile is disrupted by the injected
fuzzing obstacle code. This means that the attacker cannot
simply use profiling techniques to identify the fuzzing obstacle

code. This is further supported by the experiment results on
Fairfuzz. We purposely choose Fairfuzz for evaluation because
it has some mechanisms to target low-frequency (non-error
handling) edges, which may lower the effectiveness of VALL-
NUT. The experiment results show that such mechanism cannot
prevent Fairfuzz from getting compromised as it finds 74%
less crashes and covers 34% less edges when running on the
protected binary for 24 hours.

In VALL-NUT, jump tables are used to carry out the strategies.

Like proposed in FUZZIFICATION, we can use the rop gadgets
to implement the jump tables to disguise them [9]]. This
improvement in implementation can help to increase the
difficulty for the attacker to identify the fuzzing obstacle code.
Moreover, as discussed in FUZZIFICATION and ANTIFUZZ,
we can also apply obfuscation techniques which can further
increase the effort for identifying and evading the VALL-NUT
related code. To conclude, as far as the key strategies of VALL-
NUT can be carried out, different implementation optimizations
can be adopted and different complementary techniques can be
combined to deter the attacker from applying greybox fuzzing
to the protected program.
Performance overhead of VALL-NUT. As discussed in the
problem scope (Cf. Section [[), we try not to affect the normal
functionality and execution efficiency as much as possible.
Unlike [9] and [10], VALL-NUT does not apply strategies
to intentionally delay the execution speed of the binary for
hindering the fuzzing process. As a result, the performance
overhead of VALL-NUT is very marginal. We conducted two
extra experiments to evaluate the execution speed of both the
protected binary and the original binary valid inputs. For
the first experiment, we execute each binary 10000 times and
calculate their average execution time with another set of valid
inputs (not used in profiling). The data and statistical test
results are in Table [[ll From Table we can see that the
Aj results are all 0.50, meaning that there is a half and half
chance that the protected binary is faster or slower. The results
of the first experiment suggest that the performance overhead
of VALL-NUT on normal usage is ignorable.

For the second experiment, we execute each binary 10000
times and calculate their average execution time with an invalid
input which is guaranteed to execute the injected fuzzing
obfuscation code. The data and statistical test results are in
Table [TV] From the results, we can see that the program runs
faster with invalid inputs than with valid inputs. Although
the average execution time of the protected program is longer
than the average execution time of the original program, the
difference is marginal. The A;5 values are also around 0.50,
meaning that the protected program is not more likely to
execute slower than the original binary. The results of the
second experiment show that the fuzzing obstacle code of
VALL-NUT does not significantly slow down the execution
of the original program. Note that although the slow down
effect of the fuzzing obstacle is not significant, profiling and
injecting the obstacle code on error handling paths are still
needed because the seed queue explosion strategy requires to
fill up the greybox fuzzer’s seed pool with low quality inputs.



TABLE III: Execution Time W/-, W/O VALL-NUT on valid
inputs

Target Protected Bin  Original Bin  Aj»
exiv2 2.09ms 2.09ms 0.50
nm 1.03ms 1.04ms 0.50
objdump  1.03ms 1.04ms 0.50
mp42aac  1.05ms 1.05ms 0.50
mjs 1.02ms 1.02ms 0.50
vorbis 2.00ms 2.02ms 0.50

TABLE IV: Execution Time W/-, W/O VALL-NUT on invalid
inputs

Target Protected Bin  Original Bin =~ A;4
exiv2 2.01ms 1.97ms 0.51
nm 1.03ms 1.00ms 0.51
objdump  1.00ms 1.00ms 0.50
mp42aac  1.00ms 1.00ms 0.50
mjs 1.00ms 1.00ms 0.50
vorbis 1.00ms 1.00ms 0.50

In addition to the experiments of running the programs
independently, we also collected the execution speed of AFL-
QEMU when fuzzing the protected programs and the original
program. Table [V]shows the collected speed data. It is observed
that although the speed difference between the protected
program and the original program is marginal through the
analysis of data from Table [IT] and Table [[V] the speed of AFL-
QEMU when fuzzing the protected program is significantly
slower than when fuzzing the original program. The reason of
this phenomenon is that the pool of seed inputs maintained by
AFL-QEMU is very different. Because of the seed attenuation
effect of the protected programs, AFL-QEMU will keep larger
seeds for the protected programs. Due to some memory
operation pitfalls, the fuzzer needs a longer time to handle
larger seed inputs [32] and thus executes slower. To conclude,
VALL-NUT can slow down the execution speed of the fuzzer
without hindering the performance of the protected program.

VII. RELATED WORK

Anti-fuzzing Techniques. There are a few works on anti-
fuzzing. Whitehouse ef al. [7] proposed a number of anti-
fuzzing strategies to resist vulnerability detection, such as fake
crashes, performance degradation. David et al. [8] studied
the feedback mechanisms that are commonly used by modern
fuzzers, and then masked the signals emitted from the abnormal
code, leading to wrong feedback. As such, the fuzzers can
be misled and degraded with wrong information. Kang et al.
apply fake code injection to prevent AFL in QEMU mode
from finding a specific crash site. VALL-NUT is much more
general in that it accounts for different mainstream fuzzers
and does not target specific paths that may be vulnerable.
Contemporary with our work, Jung et al. [9] and Giiler et
al. [10] find some weaknesses of modern fuzzers and propose
countermeasures to nullify or degrade the fuzzing advantages.
Differently, we conduct a systematic study on the inspiring

TABLE V: Fuzzing Speed W/-, W/O VALL-NUT

Target Protected Bin  Original Bin = Ajs
exiv2 4 exec/s 27 exec/s 1.0
nm 70 exec/s 276 exec/s 1.0
objdump 57 exec/s 255 exec/s 1.0
mp42aac 371 exec/s 627 exec/s 1.0
mjs 78 exec/s 336 exec/s 1.0
vorbis 53 exec/s 118 exec/s 1.0

mechanism of coverage feedback in modern fuzzers, and
identify the fundamental links that power the outperformance.
The strategies proposed in this paper can entirely comprise these
links and achieve a generic defense against greybox fuzzers.
For example, our approach outperforms FUZZIFICATION in
terms of reducing detected crashes as shown in Figure [0
Greybox Fuzzing. VALL-NUT highly inspires from the recent
advances in greybox fuzzing techniques, which majorly root in
the improvements in seed evaluator, seed mutator and feedback
collector (Cf. Figure [I). Some fuzzing techniques modify
the preference on the seeds for different fuzzing purposes.
For example, AFLFast [[11] evaluates the seeds based on a
Markov chain model to improve coverage; AFLGo [33]] and
Hawkeye [34] adjust seeds’ priorities based on their distances to
the targets. Other techniques focus on improving seed mutators
to increase mutation effectiveness, either by reducing ineffective
mutators for specific inputs [14], [35], or applying structure-
aware mutations on target programs [36[|—[39]. Several other
works [15], [40]-[44] collect more feedback to distinguish
different execution states, which in turn helps to improve the
seed evaluation and mutation. To impede these techniques,
VALL-NUT decreases their effectiveness on the opposite site:
VALL-NUT confuses the seed evaluator to value those seeds
trapped into our injected code obstacles; VALL-NUT applies
seed attenuation to distort the seed mutator to generate more
large seeds that decrease the overall fuzzing efficiency; VALL-
NUT contaminates the feedback with saturated records and
non-deterministic execution behaviors. As a result, VALL-NUT
can hinder different fuzzing techniques systematically and
effectively.

Anti-analysis Techniques. Making code uninterpreted and
unanalyzed is another efficient way to prevent vulnerability
detection. Collberg et al. [45] present a number of obfuscating
transformations to prevent the analysis of intellectual properties.
Obfuscation proved to be effective in collapsing widely
used static analyzer and symbolic executor [46]]—-[49]. Others
approaches suggest injecting chaff code or even bugs to fight
against bug analysis tools and attackers’ efforts. For example,
Hu et al. [50] propose to insert a large number of non-
exploitable bugs to increase the cost of attacking. On the other
hand, software diversity is proposed to introduce uncertainties
into the target program and restrict attackers from inferring
the implementation details based on either static or dynamic
analysis results [51]. For example, the randomization [S2[]-[54]]
towards binary can destruct the return values during execution
and thereby complicate the utilization. Although the above



techniques can counteract the greybox fuzzers armed with
static analysis, they cannot stop these fuzzers from getting
sufficient runtime feedback for vulnerability inference. VALL-
NUT concentrates on attacking the feedback collection and
utilization. Through designed strategies, VALL-NUT impedes
or pollutes the feedback to downgrade greybox fuzzers’ power
of vulnerability detection.
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VIII. CONCLUSION

In this paper, we present a systematic study of greybox
fuzzing on its strengths and propose counteractive strategies
accordingly. From the standpoint of defenders, we develop three
novel strategies—seed queue explosion, seed attenuation, and
feedback contamination to restrain the advantages of greybox
fuzzing. Our evaluation shows that VALL-NUT can effectively
downgrade the performance of greybox fuzzing, making it even
worse than blackbox fuzzing.
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